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The problem to be considered here is that of

identifying, or of classifying, an observed in-

dividual as being a member of one of two

"populations/’ This problem arises in some form

in most sciences. A recent example is the prob-

lem, associated with certain international ten-

sions, of classifying salmon caught in the North

Pacific fishery as having arisen from the Asiatic

or American salmon populations.

The populations are to be considered as giving

rise to observable individuals each of which

may be (partially) characterized by a set of

k measurements. The measurements of individ-

uals from either population are distributed as

if they were independent observations on a

multivariate distribution of probability. These

distributions are assumed to be multivariate

normal, with known parameters, for each pop-

ulation.

1. Statement of the Problem

Whenan individual is misclassified, there may
or may not be loss functions associated with the

misclassification. For the problems of this paper

explicit results are not obtainable for general

loss functions; we shall assume loss functions to

be constants. Let us designate as a the loss as-

sociated with misclassification of an individual

from population I and as (3 the loss associated

with misclassification of an individual from

population II; a, /3 > 0. Also, there is the ques-

tion of whether or not anything is known about

the mixed population from which the individual

to be classified is drawn; in particular, whether

or not there are known a priori probabilities,

1
Present address: Department of Mathematics, Uni-

versity of Hawaii. This paper is a portion of a disser-

tation submitted in partial fulfillment of the Ph.D.

degree at the Virginia Polytechnic Institute; research

was in part sponsored by the National Cancer Institute

of the U. S. Public Health Service. Manuscript received

June 8, 1959.
2

Virginia Polytechnic Institute, Blacksburg, Virgi-

nia. Research was sponsored by the National Science

Foundation under grant NSF-G-1858.

under a random drawing, that an individual be-

longs to either of the parent populations. Let us

designate the prior probabilities as p for popula-

tion I and q m 1 —p for population II.

It follows that there are four levels of the

classificatory problem to be considered:

(1.1) ( a ) with loss functions and prior

probabilities

(1.2) (b) with prior probabilities only

(1.3) (c) with loss functions only

(1.4) (d) with neither

Misclassifications are undesirable; however,

there are no adequate common units in which

the "undesirability” can be measured for all of

the above levels. At each level there are two

quantities for which some form of joint mini-

mization is desired, viz.:

(1.5) (a) apPi, /JqP n
(1.6) (b) pPi, qPn
(1.7) (c) aPL pFn
(1.8) (d) Pi, Pii

where Pi is the probability that a random in-

dividual of population I is classified as having

arisen from II, and Pn is the probability that

a random individual of II is classified as having

arisen from I.

These four pairs of quantities will be referred

to indiscriminately as "error quantities.”

Now either error quantity of a pair may be

reduced to zero, but not both jointly. Thus, joint

minimization of the error quantities is, to a

certain extent, arbitrary. While various specifi-

cations of joint minimization can be formulated,

the more reasonable are those which have al-

ready been proposed elsewhere in the literature,

viz.:

(i) joint minimization may be specified as

that which minimizes the sum of error

quantities; let us denote this criterion as

"minisum”;

(ii) joint minimization may be specified as

that which minimizes the larger of the

error quantities; let us denote this cri-

terion as "minimax.”

251



252 PACIFIC SCIENCE, Vol. XIV, July I960

The first of these was introduced on level ( a ) by

Brown (1950) and the second introduced on

level (b) by Welch (1939). There has been

more recent work on discriminant analysis, some

of which is at levels similar to this treatment,

but little seems applicable as the risk functions

are not well defined.

Each of these specifications leads to the choice

of one out of a family of quadratic discrimina-

tors. However, there are two related major dif-

ficulties: one is the determination of which

member of the family is appropriate (for the

minimax solution), and the other is that the

integrals giving Pj and Pn cannot be evaluated

explicitly (for either solution), and no tables

are available for the resulting Pi and Pip

If the variance-covariance matrices of the two

populations are equal, the quadratic discrimi-

nator reduces to a linear discriminator; the in-

tegrals for Pi and Pn may then be reduced to

the incomplete integral of the standard normal

density. This is always true for any linear dis-

criminator.

If we let A be a row vector of direction num-

bers, X be a row vector of variables (represent-

ing the possible measurements on the indi-

vidual), c be a constant, and let primes denote

transposition, then a linear discriminator may

be written:

(1.9) AX' = c.

We lose no generality if we number the popu-

lations such that the individual represented by X
is classified into population I if AX' < c and

into population II if AX' c.

Let (mi, cri
2

), (m 2 ,
cr 2

2
) be the mean and

variance of AX' when X is distributed as in

populations I, II, respectively. Then it follows,

using an obvious notation, that:

A is well known (see, for example, Fisher,

1936), being the inverse of this commonmatrix

multiplied by the vector of difference means.

When the variance-covariance matrices are not

equal but are proportionate, then the correspond-

ing A ( using either of the matrices ) is still op-

timum under both the minisum and minimax

criteria.

In many fields the assumption of propor-

tionate but not necessarily equal variance-

covariance matrices is not unreasonable. This

situation occurs, for example, in marine biology.

The Hawaiian tunas ahi ( Neothunnus macrop-

terus ) and ahipahala ( Thunnus alalunga ) are

similar in most respects, but the ahi is a larger

and more complex fish. If weight, fork length,

lengths of second dorsal and anal fins, and the

ratio of the length of the pectoral fin to the

fork length (which varies inversely as the first

four variables ) are taken to be the variables, the

population variance-covariance matrices for the

ahi and ahipahala are (expected to be) propor-

tional but unequal. Another example is cited in

the literature, although only two variables were

used. Mottley ( 1941 ) found that the variances

and covariance for head and body measurements

of trout ( Salmo gairdnerii kamloops) stocked

in two Canadian lakes were proportional.

The optimum A for general dispersion ma-

trices is not easy to derive. This problem is con-

sidered in another paper by the authors ( I960)

.

The current paper considers optimum c for

given A and thus in what follows it is only

necessary to consider that A has been deter-

mined either by the methods mentioned above

or arbitrarily.

3. The Constant c for Minimized Error

Quantities

(1.10) P
I

N(0 , 1) dx:

(
1 . 11

)

2. The Appropriate Linear Function

For the case when the distributions have

identical variance-covariance matrices, the vector

We lose no generality if we let m2 > mi
and a2 ^ o-i. The designation of the population

having the larger standard deviation as popula-

tion II is arbitrary. Wemay then make a scale

transformation of ± 1, whichever is necessary

to obtain m2 > mi.

Wenow wish to obtain expressions for the

constant c which will minimize the error quan-

tities under the minisum and minimax criteria,

respectively.
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Consider apPj + /3qPn-

(3.1)
+ /J qP

n )

iTS +. HR31
• o- V(2 tt)

Equating the derivative to zero and rearrang-

ing, we obtain

which is a quadratic in c with minisum c as

roots

:

(3.3;): c(ms) r^[v n
1

- <r

i
m

2
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2 ^
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2
- m
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)

2
- 2 (
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2-“'i

Equation (3.3) has three possibilities:

( 1 ) when there are no real roots,

(2) when no roots fall in (mi,m 2 ),

and

(3) when one and only one root falls

in (rrii,m 2 )

.

If a root should fall at one of mi,m 2 ,
this may

be considered as a limiting case of situation

(2). Situation ( 1 ) is trivial; all individuals are

classified into one population. In situation ( 2 )

,

linear discrimination is not very helpful; quad-

ratic discrimination is indicated. In these situa-

tions, possibly ( depending on parameters ) there

is no discrimination which will be much of an

improvement over the classification of all in-

dividuals into one population or a purely ran-

dom classification. Thus, situation (3) will be

considered in this paper.

When a root falls in (mi,m 2 ) ,
this is the

root which minimizes apPj + /3qPn, and is

therefore the root desired. The other root max-

imizes apPi + /?qPn and therefore will not be

used. Since a 2 has been arranged to be greater

than o-i, and the smaller root is less than mi,

the positive square root is required. When
= cr 2 ,

c (ms ) is the root in (mi,m 2 ); the other

root is infinite.

Consider now the minimizing max (apPj,

/3qPlI ) . apPj and /3qPn are monotonic, decreas-

ing and increasing respectively, in c; and, there-

fore, the desired c is located such that apPj =

/3qPjI. An explicit result will not be found in

general, since the integrals have not been eval-

uated explicitly. If ap =r /3q, we have the in-

tegrals identical except for upper limits of in-

tegration, and apPj = /3qPji reduces to

Solving, we obtain a minimax c:

(3.5) c(mx) = - 1 2 LI
.

°2 + <r

i

It should be noted that if — o- 2 and ap

=r /?q, both c(ms) and c(mx) reduce to a c

dependent upon only the centroids,

This c(m) is the population analogue of the

c introduced for samples by Barnard (1935)

and Fisher (1936) and currently used in linear

discriminant analysis.

4 . A Discussion of Levels and As

The results (3.3) and (3.5) apply for the

case in which loss functions and prior prob-

abilities are known, i.e., (1.1). When either or

both of these quantities are unknown, cor-

responding to (1.2), (1.3), or (1.4), the cor-

responding error quantities considered are given

by (1.6), (1.7), or (1.8) respectively. The re-

sults corresponding to (3.3) and (3.5) are ob-

tained readily by the following substitutions in

(3.3)

and (3.5):

(1.2) 'prior probabilities only”: a = ft = 1

(1.3) "loss functions only”: p = q = 1

(1.4) "neither”: a =
i
fi = p = q=l.

For level (a), where both prior probabilities

and loss functions are known, the risk may be

measured and specified. If the total risk is to

be minimized, then c(ms) is the appropriate

constant. If the risk is to be minimized, subject

to the restriction that risks from each source

are to be equal, then c(mx) is the appropriate

constant.

For level (b), where prior probabilities only

are known, then c ( ms ) minimizes the condi-

tional probability of misclassification. However,

if classification is only part of the problem at
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hand, then it may be desirable, in order to avoid

bias in later stages, say, to minimize, subject

to equalizing the probabilities of the two types

of misclassification; here c(mx) is the appro-

priate constant.

For example, consider a merchandizing situa-

tion. If the problem is to allocate a limited ship-

ment of goods to two branches of the same

store, the same management suffers the loss

from understocking either branch, and c(ms)

is the appropriate constant to use in specifying

the quantities of goods to go to each branch.

On the other hand, if the problem is to equalize

buyer-seller risk, as in the case of an inde-

pendent mediator handling quality control, then

c(mx) is the appropriate constant to use in

specifying the acceptable level of quality.

For levels (c) and (d), the error quantities

are in no sense absolute quantities. Here c(mx)
will be the most reasonable constant to use,

since under the minimax solution the expected

numbers of misclassifications are equal for the

two populations.

In practice, a, (3, p, and q may or may not be

well defined conceptually, but either way will

often, perhaps usually, be unknown. Thus a com-

parison between discriminators using c(ms),

c(mx), and c(m) at level (d) is appropriate.

5. Comparison of Discriminators

Introduction. The discriminators may be

compared on the basis of our minisum and

minimax criteria. Let us designate these criteria

respectively in terms of the error quantities as

(i) Ps = Pi + Pll

(ii) Px = max (Pi, Ph).

In comparing discriminators, it can happen

that either one has both criteria less than or

equal to those of the other or this does not occur.

If the former holds, then the discriminator with

the smaller criteria may be said to be better

than the other. This is true whether the dis-

crimination is linear or not.

For the purposes of this paper, A has been

taken to be a vector of constants. Thus, while

linear discriminators are functions of both A
and c, our comparison need be concerned only

with varying c’s. The restriction to level (d)

together with the vector of constants, A, enables

us to keep the number of parameters down to

two for comparisons of the discriminators AX'
= c ( ms ) ,

AX' = c ( mx) ,
and AX' = c(m).

c(ms) and c(mx) are the c’s derived for the

two criteria; both reduce to c(m) in the special

case of equal dispersion matrices, c ( m) is the

population analogue of the c used in practice

and is easier to compute than are c(ms) and

c ( mx ) . Since c ( mx ) andc(ms) each minimize

one criterion, the comparisons will be to find

the conditions under which c(m) leads to both

smaller Px than does c ( ms ) and smaller Ps than

does c ( mx ) . When these conditions are satisfied

then c(m) may be regarded as a compromise

between c ( ms ) and c ( mx )

.

The two essential parameters will be defined

as

(5.1) B- = °2/<r

Tn - m
r 1

It can be seen that B ^ 1 and C > 0. If results

in B and C should be tabulated, the tables would

be symmetric in log B, —- log B, and in C, —
• C.

Condition for reasonable linear discrimination.

Under certain conditions, linear discrimination

does not yield good results; an example of this

is the situation in which the centroids of the

two populations are the same. Any description

of the conditions necessary for linear discrimina-

tion to be able to lead to reasonable results must

be, to some extent, arbitrary. Generally, the sit-

uations in which linear discrimination may be

rejected are typified by no root of c(ms) being

contained in (mi,m 2 ).

At level (d) there are always two real solu-

tions of (3.3). By restricting our interest to the

range (mi, m2 ) it follows from considerations

of monotonicity, continuity, and limiting be-

havior that a necessary and sufficient condition

for the existence of a root of (3.3 ) in this range

is

since the left and right sides of the inequality

are the densities of populations I and II at m2 .

(5.3) may be rewritten in terms of B and C
as follows:

(5.4) C > 2 (3 + l)'
2

In B
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Fig, L Four regions in (B, C) corresponding to the

properties
: ( 1 ) no linear discriminator reasonable;

(2) c{m) is a compromise between c(ms), c(mx);

(3) c(ms) is better than c(m); (4) both c(mx),

c(ms

)

are better than c{m) . In general, the larger the

C, the stronger will be the discriminator.

The lower curve in Figure 1 separates the re -

gions in (B, C) for which (5.4) is true, un-

true. Thus in region 1 a quadratic discriminator

is appropriate; elsewhere a linear discriminator

is appropriate.

Investigation of tv ben c(ms) is better than

c(m). Let us denote the larger conditional

probability of misclassification, Px ,
using c ( m)

,

c ( ms ) by Px ( m) ,
Px ( ms ) respectively.

Now c.(mx) is the point on either side of

which the probabilities of misclassification are

equal, so that a c < c(mx) indicates Pj = Px

and a c > c(mx) indicates Pjj = Px - Further,

m2 mi, o- 2 o”i imply that both c(m) and

c(ms) are greater than c(mx) since:

- 0 -

)

(5. 5. a) c(m) -c(mx) = — —-- —-

—

(5.5. b) c(ms)-c(mx) Yz q +2(.

(o’
2

-< r
1
)(m

1
tr

2 + m
2

o-

1
)

Therefore, Px (m) = Pn(m) and Px (ms) =
Pll(ms).

It follows immediately that a necessary and

sufficient condition for Px (m) > Px (ms) is

c(m) > c ( ms )

,

rrv 2 .

( Ba
i

+- rn
2)(# tr

i)
-

r ^ i
in

^]i
> °

(m
2

" 1
"n

i
)(<r

z'
<r

l
) > Z<T

i °2
jj

1j%^ rt,
:1

i
2+2

(' r
2

2
- a

\).
In -

which may be rewritten as:

(B + 1)

The center curve in Figure 1 separates the

regions of (B, C) for which Px using AX' =
c(ms) is greater, less than those using AX' =
c(m). Thus in regions 1 and 2, c(m) is better

with respect to the minimax criterion; in re-

gions 3 and 4, c(ms) is better with respect to

the minimax criterion.

Investigation of when c(mx) is better than

c(m ). Let us denote" the sum of conditional

probabilities of misclassification, Ps ,
using c(m)

,

c(mx) by Ps (m), PB (mx).

On expressing Pj, Pjj in terms of c(m),
c ( mx) and hence in terms of B, C, it follows,

after rearrangement, that

'
- p

N(0
, l)dx - N(0 , l)dx -

Jo ^ 0 L

C(Btl)

2B

N(0,l)d>P (m) -P (rnx)

- g(B,C)

say. From differential-geometrical considerations

and the fact that both c(m),c(ms) are greater

than c(mx), it follows that c(m) < c(rns)

implies that Ps (m) < Ps (mx). The upper

curve in Figure 1 is the curve g(B, C) = 0,

which separates the regions of (B, C) for which

the sum of conditional probabilities of mis-

classification using AX' = c(mx) is greater,

less than those using AX' = c(m). Thus in

region 4, c(mx) is better with respect to the

minisum criterion; elsewhere c(m) is better

with respect to the minisum criterion. The
asymptote as B tends to infinity is, approxi-

mately, C 1.029.

Figure 2 shows g(B, C) plotted against C
for several values of B.
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DIFFERENCES

BETWEEN

PROBABILITIES

Fig. 2. Difference between (a) the sum of condi-

tional probabilities of misclassification using c(m),

and (b) the same using c(mx ) ,
expressed as a func-

tion of C for several values of B.
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